

RTO-MP-IST-054 18 - 1

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Secure Middleware for Defence Applications

Dr. Ramesh Bharadwaj
Center for High Assurance Computer Systems

Naval Research Laboratory
Washington DC 20375

USA

Ramesh@itd.nrl.navy.mil

Dr. Marc Born
Fraunhofer FOKUS

Berlin
GERMANY

born@fokus.fraunhofer.de

Mr. Rudolf Schreiner
ObjectSecurity, Ltd.

Cambridge
UK

Rudolf@objectsecurity.com

ABSTRACT

Achieving robust and secure system interoperability over Mobile Wireless Networks poses a number of
daunting challenges: (1) Ensuring robustness and survivability in the presence of network jamming,
transient faults, frequent node failures (e.g., due to the batteries on a PDA running out,) and rapidly
changing network topology and connectivity. (2) Achieving acceptable performance and providing the
necessary Quality of Service (QoS) guarantees over low-bandwidth, unreliable links. (3) Ensuring system
integrity in the presence of malevolent code such as worms and viruses, Trojan horses, intruders,
eavesdroppers, and malicious attacks. The goal of the Secure Infrastructure for Networked Systems (SINS)
middleware project is to provide secure, efficient, and robust distributed system interoperability, to reduce
total ownership costs, to allow quick and easy system upgrade and reconfiguration, to lower the impact of
Commercial Off The Shelf (COTS) upgrades, and to reduce compatibility problems. Target applications
for SINS include information network situational awareness, networked C2 for combat applications, and
Unmanned Aerial Vehicle (UAV) swarms. The Secure Middleware Platform, based on Model Driven
Architecture (MDA) and the CORBA Component Model (CCM), has proved to be very effective for the
development, deployment, and maintenance of distributed applications. Model-based application
development greatly reduces effort by providing application developers abstractions of the underlying
middleware and protocols.

1.0 INTRODUCTION

Defense C4ISR systems are increasingly being required to interoperate over platforms and networks with
widely varying computational power and data bandwidths. These applications, platforms, and networks
will form the architectural framework – termed as “Network-Centric Systems” – for the information age,
integrating sensors, platforms, weapons, and command and control with the war fighters into a networked,
distributed combat force.

The military environment is very demanding, because interactions are highly dynamic, networks are
disadvantaged (e.g. low bandwidth), heterogeneous, and often require ad-hoc interoperability with
coalition partners. Also, there are various discretionary and mandatory access control restrictions on

Bharadwaj, R.; Born, M.; Schreiner, R. (2006) Secure Middleware for Defence Applications. In Military Communications (pp. 18-1 – 18-6).
Meeting Proceedings RTO-MP-IST-054, Paper 18. Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int/abstracts.asp.

http://www.rto.nato.int/abstracts.asp
mailto:Ramesh@itd.nrl.navy.mil
mailto:born@fokus.fraunhofer.de
mailto:Rudolf@objectsecurity.com

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2006

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Secure Middleware for Defence Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Center for High Assurance Computer Systems Naval Research
Laboratory Washington DC 20375 USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM202750. RTO-MP-IST-054, Military Communications (Les communications militaires), The
original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Secure Middleware for Defence Applications

18 - 2 RTO-MP-IST-054

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

exchanged data, with different needs-to-know predicated on data currency. Therefore, requirements for
such a large, complex distributed system are manifold, and include interoperability, flexibility, modularity,
rapid and cost-effective development, deployment, and migration even in multi-company and multi-
national contexts, easy (re)configuration and efficient maintenance, and information assurance. Moreover,
the whole system life cycle needs to be considered, as well as adaptability and quality of service (QoS) at
different levels. From a security perspective, adequate protection of communications (including wireless
communication), appropriate authorization and audits, and protection from attacks, e.g. denial of service,
are mission-critical.

Today, the main approach for the development of distributed applications is the use of middleware to
abstract from the underlying network technology, but even the best available middleware platforms and
modeling standards do not meet all the requirements of defense applications.

2.0 SECURE MIDDLEWARE

It is widely acknowledged that we need new ways to tackle complexity, the Achilles heel of system
vulnerabilities. These demanding requirements, the need to cope with increased uncertainty and dynamic
changes in an application's environment, and the requirement of greater flexibility, have created the need
for a paradigm shift in terms of how applications for Mobile Wireless Networks are designed,
implemented, deployed, and maintained. In this section, we explore two approaches to the construction
and deployment of secure middleware. One approach is SINS being developed at the Naval Research
Laboratory; another is secure middleware that was developed in conjunction with the EU-COACH project.

2.1 SINS
Secure Infrastructure for Networked Systems (SINS) is distributed middleware being developed at the US
Naval Research Laboratory to assist developers build applications without the need to hand-craft code that
addresses the above concerns. SINS provides developers the ability to specify situation-awareness,
dynamic interoperability, reconfiguration, and QoS requirements, in a declaratively manner. The
middleware will attempt to satisfy these requirements by a judicious choice of underlying components and
weaving-in the necessary code. We ensure System Integrity in SINS by authentication and authorization
mechanisms, providing confidentiality and integrity of transmitted information, design of security
protocols for fast and easy system reconfiguration, and the harnessing of a model checker for safety and
security policy enforcement. We address performance by providing dynamically determined agent routing
patterns, a mechanism for flexible event handling and propagation, and highly efficient transmission of
relevant information (e.g., by only transmitting changes to an object rather than the object itself.) Finally,
we achieve robustness by providing the Secure Operations Language (SOL) for specifying interaction and
coordination, an Agent Creation Framework that checks application code for completeness and
consistency, mechanical proofs of safety properties and compliance with local security policies, and
determination of the emergent behavior of an application that is comprised of many interacting
components. Finally, we introduce the novel concept of security agents that act as mini-firewalls between
applications and the Operating System (OS) resources. The goal of the SINS middleware project is to
provide secure, efficient, and robust distributed system interoperability, to reduce total ownership costs, to
allow quick and easy system upgrade and reconfiguration, to lower the impact of COTS (Commercial Off
The Shelf) upgrades, and to reduce compatibility problems. Target applications for SINS include
information network situational awareness, networked C2 for combat applications, and Unmanned Aerial
Vehicle (UAV) swarms.

In order to meet current systems engineering challenges such as pervasive and ubiquitous computing, one
has to adopt model-based approaches to the development of distributed applications. One answer to the
systems integration problem is the use of the synchronous paradigm for component integration and

Secure Middleware for Defence Applications

RTO-MP-IST-054 18 - 3

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

coordination, where developers are provided with an abstraction that respects the synchrony hypothesis,
i.e., one may assume that an external event is processed completely by the system before the arrival of the
next event. Based on the synchronous model, the Secure Operations Language (SOL) [2] is designed for
the integration of high assurance systems. The utility of SOL hinges upon the fact that it is a verifiable
language. Programs in SOL are amenable to fully automated static analysis techniques to ensure
compliance of a system with application specific requirements and local or global security policies. For a
detailed treatment of the language SOL and its formal semantics, the reader is referred to [2, 3, 4].

SOL agents execute on a distributed run-time infrastructure called SINS [3]. A typical SINS
implementation comprises one or more SINS Virtual Machines (SVMs), each of which is responsible for
the instantiation of SOL agents on a given host. An application in SINS comprises a set of software
agents that avail of services provided by SINS virtual machines running on disparate hosts over a network.
SINS provides mechanisms for the creation, deployment, and migration of agents, in addition to protocols
for inter-agent communication and synchronization. One might wonder how a synchronous language such
as SOL can be implemented on widely distributed systems where there is inherent asynchrony. The
answer is that SINS uses the Spread toolkit [1] which implements the necessary protocols to provide a
high performance virtual synchrony messaging service that is resilient to network faults.

2.2 CCM/CORBA
We propose to extend current standards in middleware and modeling, including the Object Management
Group (OMG) standards CORBA Component Model (CCM) and Model Driven Architecture (MDA), into
a Secure Middleware Platform that will serve as the information grid for Network-Centric Warfare. Our
architecture is based on several simple principles: Modelling of functional and non functional aspects of
the application, separation of concern, separation of business logic and infrastructure, abstraction from
underlying protocols and component based system development. In our architecture, an application
comprises three clearly separate sub-systems: Containers provide a distributed runtime environment and
infrastructure; Service Components implement non-functional requirements and Application Components
implement the functional properties of the application, i.e., the business logic.

The container is an enhanced version of the CCM container. It provides a complete runtime environment
for CORBA components. The container provides application interfaces for the component life cycle, for
communication between components and for the setup of connections between the components. It also
provides several basic services, such as naming, and a standardized configuration of a single component
and the application as a whole. The OMG CCM container supports synchronous and asynchronous
communications, the invocation of operations on components and the exchange of messages or events
between components. We have added streams as a third communication paradigm. Streams are an
abstraction of the underlying streaming protocol, used for example in high performance data exchange or
for voice/video communication. CCM is conventionally implemented on top of a CORBA Object Request
Broker (ORB). Our current implementation of CCM is on an ORB with enhanced support for security
protocols and additional security infrastructure. The network protocol we currently use, TCP/IP, is not
ideally suited for all communication media, e.g., for wireless communication; however, the architecture
supports transparent replacement of the protocol stack by other protocols or even replace the CORBA
ORB by alternate middleware protocols. This middleware neutrality allows application to migrate
unmodified to different environments or protocols, e.g., to cross layer protocols, secure multicast protocols
like Spread, or the Data Distribution Service (DDS).

The components implement the business logic, i.e., the functional parts of the application. They could be
developed using conventional software engineering techniques, but we recommend the Object
Management Group OMG's Model Driven Architecture for the development process: Instead of
implementing each component as source code, application developers instead define UML model of the
components, their interfaces and their interactions, and automatically generate a large part of the

Secure Middleware for Defence Applications

18 - 4 RTO-MP-IST-054

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

component source code and meta-data directly from the model, using model transformation. Only
portions of the business logic need to be written manually. We also use another component of the MDA,
the Meta Object Facility (MOF), for data- and information- modelling, and for the automatic generation of
data storage and interfaces. This approach, based on models and model transformation, greatly simplifies
the application development process.

A very important, but often neglected aspect of the application is still missing: The non-functional
requirements, for example, quality of service, and security. These play a very important role in military
systems. It is common practice to embed such non-functional requirements directly into the source code,
both in monolithic and component based software architectural approaches. However, this approach has
several disadvantages; for example, it reduces component reusability and binds an application to a specific
environment. In the Secure Middleware Platform, we are able to model and implement non-functional
aspects very much like functional aspects, using MDA/UML and special-purpose service components.
Service components intercept communication between components and directly access the underlying
network infrastructure, e.g., to set network properties. For instance, we modelled and implemented a
service for bandwidth reservation for high priority communication. The main advantage of service
containers is that they seamlessly integrate security into the middleware platform using our OpenPMF
Policy Management Framework. OpenPMF is a framework to define and enforce security policies in
distributed systems. Also based on the MDA principle, an abstract model of the security policy to be
enforced is created, and directly mapped to the concrete platform. For example, security policies for
access control, or control of information flow in a multi-level secure environment, could be defined in the
Policy Description Language of the Policy Management Framework (PMF) and loaded into a repository.
During application start-up, the required policy is loaded into the service container and enforced by
interceptors. For applications without online connections to the policy repository, it is also possible to
directly generate code that enforces the policy.

Implementing non-functional aspects using service containers has proved to be very powerful. For
example we have used our platform to implement a MILS1-CCM system, with containers running in
different partitions at different security levels. OpenPMF was used to control the communication between
components – within a single domain, and, using a CORBA domain boundary controller, across domains.
This architecture provides for separation of concerns, separating the business logic and non- functional
aspects.

A very important and often neglected function in distributed systems is the deployment of components on
different hosts. This is often done manually by the administrator. The Secure Middleware Platforms
include secure component deployment architectures, for distribution of application and service
components to different hosts and containers, to load the policies defining the non functional properties,
and to set up the initial connection topology.

3.0 CURRENT STATUS

Prototype implementations of the described platforms are available. Currently, the SINS platform is
implemented in Java and uses the Spread toolkit for group communication and key management.
Currently, three research and development groups are evaluating the middleware. As for the
CORBA/CCM middleware platform, it currently consists of the CCM implementation Qedo (Quality of
Service enabled distributed objects), MICO as the underlying ORB, with enhanced security support
provided by OpenPMF. The platform was successfully evaluated on several demonstration projects.

1Multiple Independent Levels of Security

Secure Middleware for Defence Applications

RTO-MP-IST-054 18 - 5

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

4.0 FUTURE WORK

Associated with SINS is the Secure Operations Language (SOL), a synchronous language supporting the
behavioural specification of agents in addition to their composition and coordination. SOL has been
extended with features (such as the notion of component failure) to support a more general architecture for
the composition of reusable components for critical applications that must satisfy important security, real-
time, and fault-tolerance requirements. We have documented an initial study in formal verification of
architectural patterns in support of construction of dependable distributed applications. This initial study
has shown that it is relatively straightforward to prove a safety property associated with a generic module
that implements an architectural pattern. The efficacy of this approach is that more generic architectural
patterns need only be verified once and then instantiated for each system in which they are utilized.

In the CORBA/CCM project, we have so far concentrated on low level aspects, such as interfaces to ORB-
level security protocols, the infrastructure, interfaces between the container and the service components,
and effective evaluation of security policies. The focus of our future work will be to exploit this
infrastructure for different purposes, for example, to use the service containers for other QoS
requirements, such as fault tolerance, and infrastructure for the management of large clusters. Another
area for future work is safety, for example to provide support for defining and checking constraints. We
currently view CCM as a static distributed computing environment, but components can also be managed
and deployed as dynamic agents. We plan to use the CCM platform for implementing dynamic
reconfiguration and self organization, especially in the context of ad-hoc networks.

5.0 CONCLUSION

The goal of the NRL dependable middleware project is to develop infrastructure to deploy and protect
time- and mission-critical applications on a distributed computing platform, especially in a hostile
computing environment, such as the Internet. Such an infrastructure may be used for developing secure
confinement mechanisms for unreliable or untrusted COTS components.

The Secure Middleware Platform based on Model Driven Architecture and the CORBA Component
Model has proved to be very effective for the development, deployment, and maintenance of distributed
applications. Model-based application development greatly reduces effort, while improving code quality,
by providing abstractions of the underlying protocols and middleware to the application developer. Also,
middleware-neutral development eases migration of applications and seamlessly integrates non-functional
requirements such as quality of service and security into the model-driven architecture.

6.0 REFERENCES

[1] Y. Amir and J. Stanton. “The SPREAD wide area group communication system.” Technical report,
Johns Hopkins University, Baltimore, MD, 1998.

[2] R. Bharadwaj. SOL: A verifiable synchronous language for reactive systems. In Proc. Synchronous
Languages, Applications and Programming, ETAPS 2002, Grenoble, France, April 2002.

[3] R. Bharadwaj. Verifiable middleware for secure agent interoperability. In Proc. Second Goddard
IEEE Workshop on Formal Approaches to Agent-Based Systems, Greenbelt, MD, October 2002.

[4] R. Bharadwaj. A framework for the formal analysis of multi-agent systems. In Proc. Formal
Approaches to Multi-Agent Systems, Warsaw, Poland, April 2003.

[5] S. S. Yau, S. Mukhopadhyay, and R. Bharadwaj. Specification, analysis, and implementation of
architectural patterns for dependable software systems. In Proc. 10th IEEE Int'l Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS 2005), Sedona, AZ, Feb. 2005.

Secure Middleware for Defence Applications

18 - 6 RTO-MP-IST-054

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

